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INTRODUCTION 

Two developments w i t h i n  the past decade have had a major impact upon our  a b i l i t y  
t o  i n f e r  useful in format ion about ash fus ion temperatures from the composition o f  
the ash. The emergence o f  f a s t  and accurate mult ielement analyzers means t h a t  the 
chemical composition o f  an ash can be determined q u i c k l y  and r e l i a b l y .  A t  the same 
time, the p r o l i f e r a t i o n  o f  personal computers, and o f  s t a t i s t i c a l  software w r i t t e n  
f o r  them, makes i t  poss ib le  t o  r a p i d l y  est imate an ash fus ion temperature, saving 
the two o r  three days' t ime which would be requi red t o  determine fusion 
temperatures i n  accordance w i t h  standard procedures. 

I n  order f o r  such an estimate t o  be usefu l ,  a v a l i d  and r e l i a b l e  a lgor i thm i s  
needed. M u l t i p l e  l i n e a r  regression (MLR) analys is  has been used by a number o f  
workers t o  ob ta in  estimates genera l ly  f und t o  be super ior  t o  the s ing le- term 
fac to rs  used i n  the e a r l i e r  The present work re-examines the use 
o f  MLR analys is  w i t h  p a r t i c u l a r  reference t o  techniques f o r  avoiding the problem 
o f  mu1 t i c o l l  i n e a r i  t y .  

EXPERIMENTAL 

Seven source coals, o f  rank from l i g n i t e  A t o  medium v o l a t i l e  bituminous, were 
selected f o r  study. Coal sou ry8 ,  proximate and u l t ima te  analyses, and ash 
compositions have been reported. Table 1 shows the ranges o f  the analyses. 
A f t e r  reduct ion t o  -60 mesh (-0.25 mm) three blends were prepared, i n  the 
propor t ions 3:1, 1:l and 1:3, f o r  each o f  the 21 binary combinations o f  source 
coals. Ash samples from the source coals and2 the 63 blended coals were then 
prepared i n  accordance w i t h  ASTM Method D 1857. 

Ash samples were fused w i t h  l i t h i u m  tet raborate f o r  elemental analys is  by X-ray 
fluorescence spectrometry, using an ORTEC Model 6141 spectrometer. Ca l i  b r a t i o n  and 
analysis condi t ions have been reported e l~ewhere.~, ' '  Cross-analyses were made by 
i nduc t i ve l y  coupled plasma spectrometry, us ing a LECO Plasmarray I C P  500 
spectrometer. It i s  necessary t o  analyze the  qshes o f  each blend, since 
composition cannot be estimated by interpolat ion."" 

Ash fus ion temperatures (reducing atmosphere) were measured i n  dup l i ca te  o r  
t r i p l i c a t e  on ash s p l i t s  using a LECO Model AF-600 ash f u s i b i l i t y  system. 
Prec is ion f o r  t he  fou r  ash fus ion temperatures i s  given i n  Table 2. Except f o r  
f l u i d  temperature, the average e r r o r  est imate i s  less than 1 8 O F  (10 K). 
S t a t i s t i c a l  analyses were conducted us ing the S t a t i s t i c a l  Analysis System." 

RESULTS 

Ash proper t ies cannot be adequately described by assuming a mixture o f  ten d i sc re te  
oxides. These components obviously i n t e r a c t  w i t h  one another, i n  acid-base and i n  
other  metathet ic  react ions.  To take account o f  these, a sgt qf crossterms can be 
generated, f o r  example, [Na,O]*[SO,] from [Na,O] and *'- ' For b r e v i t y  these 
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oxides and t h e i r  crossterms w i l l  be represented by the parent element symbols, 
e.g., Na and Na*S. 

L im i ta t i ons  ImDosed won  Reqressor Selection. I n  developing an a lgor i thm t o  
estimate an ash f u s i o n  temperature, the main task i s  t h a t  o f  se lec t i ng  regressor 
terms from among t h e  ten d i r e c t  analyses and the 45 crossterms. The wealth o f  
candidate regressors requi res the use o f  some se lec t i on  ru les .  There are, f o r  
example, 29 m i l l i o n  s i x - te rm combinations o f  these regressors. We have chosen t o  
focus upon the ex ten t  o f  c o l l i n e a r i t y  among the selected regressors. When a 
substant ia l  l i n e a r  dependence ex i s t s  between two variables, they are sa id t o  be 
~ o l l i n e a r . ’ ~  While high c o l l i n e a r i t y  between a p r e d i c t i v e  va r iab le  and the 
dependent va r iab le  i nd i ca tes  a good p red ic t i ve  re la t i onsh ip ,  high co r re la t i ons  
among p r e d i c t i v e  va r iab les  are not  desirable. MLR analys is  i s  based upon the 
assumption o f  o r thogona l i t y :  the d i s t r i b u t i o n  o f  values o f  each p red ic to r  i s  
assumed t o  be independent o f  the d i s t r i b u t i o n  o f  values o f  any other  p red ic to r .  
That ideal  cond i t i on  i s  seldom found i n  r e a l  data, c e r t a i n l y  not  i n  coal ash 
compositional data. Fortunately, m u l t i p l e  regress ion can t o l e r a t e  an appreciable 
amount o f  c o l l i n e a r i t y  among regressors. Nevertheless, a major hazard i n  MLR 
analysis i s  t h a t  i n  the presence o f  excessively high c o l l i n e a r i t i e s  among 
regressors ( m u l t i c o l l i n e a r i t y )  i t  i s  easy t o  get p r e d i c t i v e  equations which are 
good-looking i n  terms o f  RL and roo t  mean square e r r o r  o f  est imate (RMSE), but 
which are i n  f a c t  useless. 

M u l t i c o l l i n e a r i t y  i n  a candidate regression ana1,lsis i s  t y p i c a l l y  detected by 
i n s t a b i l i t i e s  o f  regress ion coe f f i c i en ts ,  such as 

(1) l a r g e  changes i n  values when a va r iab le  i s  added t o  o r  de leted from the 
model ; 
( 2 )  l a rge  changes i n  values when datasets are added o r  dropped from the 
model ; 
(3)  l a rge  standard e r ro rs  associated w i th  the  c o e f f i c i e n t s  o f  important 
terms. 

A l l  of these regressions are o f  the form: 

AFTestimted = bo t b,X, t b2X2 t b3X3 + ... 
The t e r m  common t o  a l l  regressions on a g iven AFT i s  the i n te rcep t  term bo. A 
convenient f l a g  f o r  m u l t i c o l l i n e a r i t y  i n  any p a r t i c u l a r  candidate regression i s  the 
standard e r r o r  o f  t h i s  i n te rcep t  term ( S E I ) .  Since the RMSE’s o f  t he  be t te r -  
look ing regress ions are found t o  be about 45OF (25 K), we have adopted as a 
screening c r i t e r i o n  tha t  an acceptable regression must have an S E I  va lue o f  less 
than 90°F (50 K ) .  

For the fo l l ow ing  analys is  Pearson’s c o r r e l a t i o n  c o e f f i c i e n t  R i s  used t o  express 
c o l l i n e a r i t y  between pa i r s  o f  p red ic to r  variables, wh i l e  R2 when used i s  the square 
o f  the mu1 t i p l e  c o r r e l a t i o n  c o e f f i c i e n t  f o r  a given regression. 

I f  we set the c r i t i c a l  value o f  R ( R  ) a t  0.99, on ly  5 o f  t he  55 terms (10 d i r e c t  
analyses and 55 crossterms) are foun8 t o  have c o l l i n e a r i t i e s  w i t h  other  regressor; 
terms f o r  which R > R . 
co r re la t i ons  [signif iccant i n  terms o f  t h i s  selected value o f  R,] w i t h  other  
p r e d i c t i v e  var iab les.  A t  R, = 0.99 the f i v e  c o l l i n e a r  terms occur i n  a s ing le  
c lus te r  [Mg, Mg*Na, Mg*S, Mg*Si, Mg*Ti]. On the other  hand, a t  R, = 0.85, on l y  7 
of the 55 terms a re  f ree o f  s i g n i f i c a n t  co r re la t i ons  w i th  others, t he  other  48 
occurring i n  three c o r r e l a t i o n  c lusters .  

Our f i r s t  approach has been t o  set R, a t  each o f  several values, then f o r  each 
value of R, t o  generate the best avai lab le regressions which avoid combinations o f  
regressors for  which Rx,y > R,. 

The remaining 50 var iab les are f r e e  o f  ’ s i g n i f i c a n t  
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When R, is set at 0.99 there are few restrictions on regressors. For ash softening 
temperature we find a good four-term regression, for which R2 = .E59 and RMSE is 
an acceptable 58.2'F (32.3 K). When the best (by R2) five-term regressions were 
examined, the first three regressions were unaccpptable, all having SEI's > 200'F. 
For the first acceptable five-term regression R = 0.885 and RMSE = 52.9'F (29.4 
K). Among the next fifty regressions [the best ten (by R') regressions containing 
6 to 10 terms] none were acceptable; all were rejected by the S E I  criterion. 

When R, is set at 0.85 there are considerably more restrictions on the combinations 
of regressors which can be used in any particular regression. The best (by R') 
three-, four- and five-term regressions are all acceptable by the SEI criterion, 
but are not a] powerful as those found above. For example, for the best five-term 
regression R = 0.855 and RMSE = 59.3OF (32.9 K). There is an important 
difference, however, in this second family of regressions: the S E I ' s  for all 
regressions are well below 90'F, and it is in fact possible to obtain good 
regressions with ten or more terms present. Table 3 summarizes the fits of the 
best regressions for these two values of R,. 

It is evident that there are major changes in the extent and complexity of 
regressor-regressor correlations in this range of R Figures 1 and 2 illustrate 
the correlations among 19 regressor terms for two inrtkrmediate R, values, 0.98 and 
0.90. (Lines connecting terms indicate R > R .) The clustering of the 55 
candidate regressor terms as a function of Ikr is &own in Table 4. 

A Strateov for Selectina Reqressors. Based upon preliminary tests, R, was set at 
0.920, and the 19 terms found to be free of correlations were taken as an initial 
set, 

1. 

2 .  

3. 

4. 

The best regressors were selected, by R' ranking, from each of the clusters 
of terms. The largest of these consists of ten terms (Figure 3). To 
illustrate this selection process with this cluster, the Ca*Ti term i s  found 
to make the greatest incremental contribution to the initial set. When this 
term is selected, the collinearities shown in Figure 3 require that four 
other terms (Ca, Ca*Na Ca*Si and K) be excluded. With these exclusions, two 
other terms in this cluster - -  Al*Ca and Ca*S - -  are isolated from 
collinearities and are therefore included. Upon analysis of the three 
remaining terms, Al*K is found to make the greatest incremental contribution 
to R2 and is included; and its inclusion requires the rejection of K*Si and 
K*Ti. A similar R testing procedure was used to select the most useful 
terms from each of the other clusters. 

The best 36 regressions (with four, five and six terms) from this enlarged 
base were then examined, and several regressors - -  which appeared in none of 
the best regressions - -  were dropped. Three of the 36 test regressions 
exhibited multicollinearity. One term, [Si], appeared in all three 
multicollinear regressions and in none of the 33 good regressions; this term 
was also dropped. 

Starting with 22 terms from the above process, steps 1 and 2 were repeated, 
to ensure that the most useful terms from each cluster were included. After 
this second iteration, a group of 23 terms remained. 

To these final terms were added seven additional terms, selected from the 
pool o f  remaining terms on the basis of the greatest incremental improvement 
in overall RZ. For example, if the 24th term is Na*P, overall R2 is 
incremented by 0.0063, more than by any other added term; therefore Na*P is 
added to the set. 
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Step 4 clearly introduces collinearities. 
> R ] with P*S. Among other added terms Fe*Ti is collinear with Al*Fe, and Fe a d  
Fe*?i are collinear with both Fe*Ti and Al*Fe. The argument for inclusion of the 
several terms in step 4 is pragmatic: the regressions with these terms are better 
estimators than those without these terms, and this step still allows overall 
collinearity to remain at an acceptable level by the SEI criterion. 

Best Predictive Reqressions. The best regressions obtained under reducing 
atmosphere for the set of 70 ashes, following the above strategy, are given in 
Tables 5-8. Calculations have been carried through ten regressor terms. It is 
possible to generate predictive equations with even more regressors. However, the 
incremental improvement falls to small values as the number of terms increases. 
Furthermore, the probability of significance of each regressor term, which 
typically is > 99.9% for good regressions with as many as nine terms, falls for at 
least one regressor below 99% with the inclusion of the tenth term. Thus this 
appears to be a natural break point for these data. 

Figures 4-7 show plots of estimated vs. observed fusion temperatures, using the 
ten-term equations o f  Tables 5-8. In the tables the average error is estimated 
using the approximation of average error for large sets: 

Na*P, for example, is collinear [R, 

E(avg) = [RMSE]*[2/pi]0-5 ( 2 )  

The average observed errors of estimate are given in Figures 4-7. These are similar 
to but slightly lower than the estimated values. 

These calculations use data from all 70 ashes. If the three most remote outliers 
are dropped from each calculation, the average error is decreased by an average of 
3.OoF (1.7 K). 

Further Testinq for Multicollinearity. The most common indicators of regression 
fit are R‘ and the standard error of fit (RMSE). Table 9 summarizes key 
characteristics of four regressions on softening temperature, all with good values 
of R2 and rmse. On the basis of these indicators alone, the choice would fall 
between the 30-term and the 55-term regressions. This choice would be unfortunate. 

By the SEI criterion [acceptable regressions must have SEI’s below 90°F (50 K)] 
only the first of these four regressions is acceptable, the other three showing 
SEI’s of 800’F and above, indicating excessively high collinearity. 

An additional test for multicollinearity is examination of the precision of the 
regression coefficients. Virtually all regression programs provide an estimate of 
the standard error associated with each coefficient. We calculate precision as a 
re1 ative percentage: 

P (%) = 100 * [S.E. of coefficient]/[value of coefficient] (3) 

Coefficients in multiple linear regressions are seldom obtained in high precision, 
since a moderate displacement in the value of any one coefficient can be balanced 
by slight shifts in the values of others. For good regressions, precision as 
defined in Eqn. 3 is typically in the range 5-30%. Table 9 shows the average 
precision calculated for the ten coefficients of the first regression, and for the 
first ten coefficients of each of the other regressions. The average error 
increases tenfold in going to the 20-term regression, and over a hundredfold in 
going to the 55-term regression. 

Another test of the goodness of a regression is made by adding or deleting a dummy 
variable (a regressor which itself has no predictive power). Instability of a 
coefficient can then be calculated as: 
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1 = [C11001FIED / C,,,I,,, - 11 * 100 % (4) 

where C, ~ ~ 't and CTlF16D are the regressor coefficients before and after 
addition e e ion of t e ummy variable. 

A two-digit random number term was added to each of these regressioyf, taking the 
first 70 random numbers listed in a standard statistical reference. For a good 
regression this dummy variable should have very little effect upon the coefficients 
of the 'real' regressors. For the 10-term regression in Table 9 the average 
instability is 0.01%. However, the average instabilities for the first ten terms 
of the other three regressions are from two to four orders of magnitude larger. 

Perhaps the most practical test of the stability of regression coefficients is that 
of adding or deleting cases from the dataset. If a regression is to have any 
useful predictive power, it must be reasonably resistant to fluctuation of 
coefficient values when cases are added or removed. Roughly, variations may be 
expected to be of the order of magnitude of the precisions of estimate of the 
coefficients, that is, typically 5-30% for good regressions. 

Stability of coefficients to removal of cases was tested by deleting every fifth 
case in the 70-case dataset, producing a reduced dataset of 56 cases. (This 
deletion pattern was selected to avoid introduction of systematic bias.) 
Coefficient instabilities were calculated by Eqn. (4). For the 10-term regression 
of Table 9 the average instability is 14.1%, consistent with the average 
coefficient precision of 15.8%. For each of the other regressions in Table 9 the 
average average instabilities are well over 100%. 

These three tests lend support to the use of a critical value of S E I  as a 
convenient indicator of excessive collinearity. The most practical and persuasive 
showing of the utility of a good regression, however, is to demonstrate its ability 
to predict from a subset of cases the AFT'S of "new" cases. We have taken the 
coefficients obtained with good ten-term regressions using the reduced set of 56 
cases, and have applied them to the 14 excluded cases, treating these as "new" 
cases. Figure 8 shows the estimated and actual values of softening temperatures 
for these "new" cases. The average error of estimate is 36.8OF (20.4 K). A 
similar estimation of hemispherical temperatures yields an average error of 
estimate of 34.1'F (18.9 K) .  

DISCUSSION 

Gray' has recently reviewed various British, American, Australian and international 
standards for ash fusion temperature determinations. Repeatability (within a 
laboratory) is 30-40 K for initial deformation temperature, 30 K for hemispherical 
temperature and 30-50 K for fluid temperature. Tolerated reproducibility (between 
laboratories) i s  generally in the range 50-80 K. The repeatability of instrumental 
ash fusion temperature in this work (Table 2) is considerably tighter than these 
figures. The average observed error of estimate for the four ash fusion 
temperatures (Figures 4-7) is 15-18 K. This error includes contributions from coal 
and ash inhomogeneities, splitting, chemical analysis and AFT determinations, as 
well as inadequacies of the fitting equations. This approach therefore appears to 
provide estimates of satisfactory precision. 

In the better regressions for estimating softening and hemispherical temperatures 
certain terms are encountered repeatedly. In softening temperature regressions 
Al*Ca, Ca*Fe, Na*P and P often occur, always with positive coefficients; Ca*Si, P*S 
and P*Si also occur frequently, and always with negative coefficients. I n  
hemispherical temperature regressions Al*Ca, Ca*Fe, and Na*P often occur, again 
always with positive coefficients; Ca*Si, Fe*S and P*S often occur, and always with 
negative coefficients. Across the ten best ten-term regressions for each AFT the 
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coef f ic ients  i n  the d i f f e r e n t  regressions are f a i r l y  constant, e x h i b i t i n g  standard 
dev iat ions o f  10-20% r e l a t i v e .  For example, i n  ten  regressions on hemispherical 
temperature the  c o e f f i c i e n t s  o f  the common terms and t h e i r  standard dev iat ions are: 
Ca*Fe 41,910 +/- 4810, Ca*Si -11,740 t/- 940, Fe*S -47,610 +/- 8300, P*S -411,100 

Simple s e n s i t i v i t y  ana lys i s  ca l cu la t i ons  have been made t o  determine, f o r  various 
regression models, the e f f e c t  o f  an ana ly t i ca l  e r r o r  o f  1% r e l a t i v e  upon the 
estimated AFT. Fo r  the best 10-term regression on sof ten ing temperature the 
average s e n s i t i v i t y  f o r  the ten  ashes analyzed i s  4.OoF per % r e l a t i v e  e r ro r .  The 
most sens i t i ve  analy te i s  S i0 , f o r  which a 1% r e l a t i v e  ana ly t i ca l  e r r o r  produces 
an e r ro r  of es t ima t ion  o f  18Of (10 K). This may be unacceptable f o r  laborator ies 
using atomic absorpti?! analysis, f o r  which r e p e a t a b i l i t y  f o r  SiO, i s  2% absolute 
or  about 5% r e l a t i v e .  Using the second best regression (w i th  a l oss  i n  RMSE o f  
on l y  0.1OF) the  average s e n s i t i v i t y  i s  2.9OF per X r e l a t i v e  e r ro r ,  and t h a t  f o r  
SiO, i s  reduced from 18' t o  9.8'F. The best ten-term regression on hemispherical 
temperature shows an average s e n s i t i v i t y  o f  2.6OF pe r  % r e l a t i v e  er ror ,  and a 
s e n s i t i v i t y  o f  9.2OF per % r e l a t i v e  e r r o r  i n  SiO, determination. The e ighth best 
regression (which g i ves  away 0.4OF i n  RMSE) shows an average s e n s i t i v i t y  o f  2.loF/% 
and f o r  SiO, a s e n s i t i v i t y  o f  5.2OF/%. As a p r a c t i c a l  mat ter  i t  i s  obviously 
sensible t o  determine not  on ly  the best v a l i d  regression but a l so  a group o f  
regressions, perhaps the ten best  v a l i d  regressions. The most usefu l  o f  these can 
then be se lected on the bas is  o f  est imated ana ly t i ca l  e r r o r s  and s e n s i t i v i t y  
analysis f o r  each candidate regression. 
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Table 3 

Best Regression F i t s  a t  Two Values o f  R(cr i t ica1) .  

c a l )  - 0.85 

SI EmSL3 
.766 14.2' 

.804 68.5 

.E55 59.3 

.E79 54.5 

.E95 51.2 

.908 48.5 

.914 47.2 

.921 45.5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Regressions meeting the c r i t e r i o n  t h a t  S E I  c 90°F [ c  50 K].  

Fourth best regression ranked by Rz; SEI's o f  f i r s t  three regressions 

> ZOOOF. 

None o f  the f i r s t  ten regressions ranked by R* have S E I ' s  below 90°F. ' 

B Table 4 

Correlation Clusters o f  Regressors a t  Various Levels o f  Rcritica, 

total free 
W@!s 

50 

36 

24 

19 

16 

14 

7 
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Table 5 

Ber t  Regressions on I n i t i a l  Deformation Temperature 

lc&DLx 

1,863'F 

1,822 

2.093 

2.138 

2,080 

1,654 

1,609 

- u _ s f  
5.51 K*P Ca*Fe Al*Na 

Na.51 Fe*S Ca*Ti Ca*Fe AVNa 

-8.OlE3 1.26E6 1.61E4 1.40E5 36.4 A03 

5.QE4 -5.08E4 -3.49E5 7.85E4 l.43E5 34.3 .E44 

P S*Si Ca*Ti Ca*Fe Fe*Na 
1.66E4 -1.82E4 -2.50E5 6.26E4 -3.99E5 
A1 *Ir 
2.96E5 37.1 3 7 7  

P Mg*P 5.51 Ca*Ti Ca*Fe 
1.37E4 1.09ES -1.94E4 -2.87E5 6.63E4 
Fe-a APNa 

-4.54ES 3.20E5 41.1 .886 

P S*Si P s i  P S  C P T i  
1.46E5 -1.81E4 -2.49E5 -3.50E5 -3.23E5 
Ca*Fe Fe*Na APNa 
6.28E4 -4.43E5 3.SOES 50.4 .PO58 

P P S I  K*S P S  Fe*K 

C a W  Ca*Fe Fe*Na Al 'Ha 
1.95E5 -3.08E5 -1.55E5 -6.17E5 1.21ES 

-3.90E5 7.68E4 -7.73E5 3.71L5 68.8 .9147 

P P s i  K'S P S  K.11 
1.94ES -3.21E5 -1.63E5 -5.82E5 7.69E5 
Fe.K Ca*Ti Ca*Fe Fe*Na APNa 
9.03E4 -3.54E5 7.4OE4 -7.3OE5 3.50E5 69.8 .9212 

EEscl 

72.1 

64.8 

58.0 

56.1 

51 .s 

49.5 

47.9 

.__. 

Table 6 

Bert Repressions on Softening Temperature 

L a t E e t l T e n s '  

2.004'F -3.76E5 6.92E5 3.15E6 7.30E4 27.5 .a52 

1.896 -5.34E3 -5.52ES 4.09E4 1.48E4 5.64E6 54.4 .882 

PS K*P Na*P Al*Na 

Ca*Si P S  Al*: Al*Ca Na*P 

C a W  Fe*Si K*S K*Na Ca*Fe 

Fe*Na 
2.344 -9.04E3 -5.86E3 -5.50E5 7.07E6 5.80E4 

-3.62E5 55.8 .9047 

P Ca*Si P s i  P S  APK 

APCa Na*P 
2.23E4 4.64E6 47.9 .9240 

1,827 1.23E5 -9 .110 -2.20E5 -8.26E5 5.21E4 

Ca*Si Fe*Si P S  Fe*S K*lr 

Ca+Fe Al*Ca Na*P 
5.15E4 8 .480 4.20E6 65.3 .9286 

11 F e w  51.71 P S  PS 

K*Na Fe*K A P K  Na*P 
2.62E6 -7.48E4 l.lOE5 4.64E6 53.5 .9356 

Fe Hg*P Fe% APFe S 
S*Si APK Ca*Na Ca*Fe APNa 

2,212 -1.09E4 -2 .730 -4.27E5 -4.33E4 1.698 

1,806 1.33F.5 -1.75E4 -2.89E5 -3.03F.5 -5.48E5 

2,248 2.97E3 2.29E5 -8.57E4 -2.67E4 1.37E4 

-5.80E4 7.69E4 -2.28E5 4.65E4 3.28E5 46.8 .9420 

B B C E  

59.5 

53.5 

48.5 

43.6 

42.7 

40.9 

39.1 

57.5 

51.7 

46.3 

44.8 

41.1 

39.5 

38.2 

.-___ 

= 
47.5 

42.7 

38.7 

34.8 

34.0 

32.6 

31.2 



Table 7 

Ber t  Regressions on  Hemirpher ical  Temperature 

2,078 

1,897 

2,070 

2,195 

2.066 

2,192 

2,256 

P S  
4.53E5 

Ca*Si 
-5.350 

C a W  
-4.41E3 
A1 *Na 
1.18E5 

C a W  
-1.18E4 
Al*Ca 
1.46E4 

P 
1.81E4 
CaVe 
3.42E4 

Fe 
6.54E3 
A1 'K 
5.33E4 

P 
9.7IE5 
Fe*S 

-4.82E4 

K'P Na*P 
7.93E5 2.77E6 

P'S K'Ti 
-4.80E5 1.09E6 

P S  Fe*S 
-1.09E5 -3.62E4 

K*S PS 
1.34E5 -5.72E5 
Na*P . 
5.60E6 

Ca*Si PS 
-1.16E4 -3.61E5 
Al*Ca Na*P 
1.73E4 2.22E6 

C a W  F e W  
-1. l lE4 -1.62E4 
Ca*Fe Al*Ca 
3.34E4 1.43E4 

A1 *Na 
6.21E4 

Al*Ca 
1.61E4 

K'P 
1.29E6 

Fe*S 
-4.28E4 

Fe*S 
-3.04E4 

P S  
-4.65E5 
Na*P 
4.55E6 

F e W  
-1.16E4 
APCa 
1.22E4 

Na*P 
4.75E6 

Ca*Fe 
4.14E4 

Ca'Fe 
4.01E4 

K*Na 
1.14E6 

Fe*S 
-4.26E4 

P S  
-3.88E5 
Na*P 
2.98E6 

25.2 .E72 

69.3 A 9 6  

25.8 .9127 

23.1 .9287 

36.7 .9379 

66.2 .9446 

74.6 ,9477 

MsL% 

54.6 

49.7 

45.9 

41.8 

39.3 

37.5 

36.7 

Table 8 

Best Regressions on  F l u i d  Temperature 

S*Si  P S  K*P Al*Na 
2,185T -8.7463 -6.09E4 1.00E6 1.73E5 24.9 ,892 

S*S1 P S  K*P Al*Na 
2,171 ?;!E4 -8.52E3 -1.06E5 1.06E6 1.78E5 24.6 .go10 

S*Si K*P Ca'Ti Ca*Fe Fe*Na 

APNa 
2.90E5 34.0 .9172 

2.319 -1.88E4 6.33E5 -1.11E5 3.3OE4 -2.48E5 

F e w  S*Si P S  K*P 
2,155 ?;:E5 -3.45E4 -1.29E4 -1.39E5 9.50E5 

CPFe APNa 
1.27E4 2.40E5 23.2 .9266 

T i  Fe% 5.51 W T i  

P S  K*P Al*Na 
-2.05E5 l.lOE6 2.44E5 55.3 .9313 

2,203 6.66E4 ?;!E5 -3.91E4 -1.45E4 -1.40E5 

T i  W P  Fe% S*Si Si.11 

P S  K*P Ca*Fe Al*Na 
-1.89E5 l . l l E 6  7.8JE3 2.57f5 54.1 .9355 

2,204 5.02E4 2.35E5 -4.41E4 -1.57E4 -1.1OE5 
T i  nS*P Fe% S*Si Si.11 

P S  K*P Ca*Fr Al*Na 
2,204 5.02E4 2.35E5 -4.41E4 -1.57E4 -1.1OE5 

I f 5  54.1 .9355 

ra.3 

53.1'F 

51.2 

47.1 

44.8 

43.7 

42.7 

average 
& 

43.6 

39.6 

36.6 

33.4 

31.4 

29.9 

29.3 

z2E 
42.3OF 

40.8 

37.6 

35.7 

34.8 

34.0 



Table 9 

Indicators of Hulticoll inearity in Softening Temperature Regressions 

10  termsa 20 termsb 3 0  termsb 55 terms 

R2 (uncorrected) .942 .9547 .9667 .9770  

rmse 

S E I  

3 9 .  1'F 37.9'F 36.4'F 50.5'F 
2 1 . 7  K 2 1 . 1  K 2 0 . 2  K 28 .1  K 

46.8'F 813'F >212OoF >21,0OO0F 
2 6 . 0  K 452 K >1170 K >11,600 K 

ivg precision of first 
10 coefficients' 1 5 . 8  % 159 % 272 % >2,400 % 

Avg instability of 
first 10 coefficients 
to a dummy variabled 0.01% 4.6 % 32.1% 400 % 

Avg instability of 
first 10 coefficients 
to removal of 14 
casese 1 4 . 1  % 111 % 449  % >1,500 % 

a 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Best regression from Table 6 .  

Selected by forward selection procedure. 

[ S . E .  of coefficient]/[coefficient] * 100%. 
Average shift in value of coefficients upon introduction of a 
random number variable (see text). 

Average shift in value o f  coefficients upon deletion o f  every 
fifth case in the dataset. 

e 
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P I m  1 

CORRELATIONS AMONG 19 TERMS 

R(crit) = 0.98 - AI-Ca 
AI-S AI-Na 

0 0  

ca-Ti 

Ca-Na Na-S 

PIGrmE 2 

CORRELATIONS AMONG 19 TERMS 

R(crit) = 0.90 

K-AI K-Si 
AI-Ca 

AI-S 

Ca-Na Na-S 
241 



PICUBB 3 

SELECTION TO AVOID COLLINEARITIES 
Acca 

PICURB 4 
ESTIMATE OF INITIAL DEFORMATION TEMP. 

70 CASES 

INlT DEF TEMP (OBSERVED) 
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ESTIMATE OF SOFTENING TEMPERATURE 
70 CASES 

I I I I I I / 

1 

T(soft) OBSERVED 

BIGWE 6 
ESTIMATE OF HEMISPHERICAL TEMPERATURE 

70 CASES 

I 

2000 I I I I 
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 

HEMISPHERICAL TEMP (OBSERVED) 
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PICURE 7 

ESTIMATE OF FLUID TEMPERATURE 
70 CASES 

\ 

FLUID TEMPERATURE (OBSERVED) ~ 

FIGURE 8 

SOFTENING TEMPS OF 14 "NEW' ASHES 
USING BEST SOFTENING TEMP REGRESSION 

- 
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